Given a divisor with rational or real coefficients, but whose coefficients are actually integers, we first check if all coefficients are integers. If so we make this divisor to a Weil divisor. Otherwise, an error is thrown.
i1 : R=QQ[x] o1 = R o1 : PolynomialRing |
i2 : D=rationalDivisor({3/2}, {ideal(x)}) o2 = 3/2*Div(x) of R o2 : QDiv |
i3 : E=realDivisor({1.5}, {ideal(x)}) o3 = 1.5*Div(x) of R o3 : RDiv |
i4 : toWDiv(2*D) o4 = 3*Div(x) of R o4 : WDiv |
i5 : toWDiv(2*E) o5 = 3*Div(x) of R o5 : WDiv |
i6 : try toWDiv(D) then print "converted to a WDiv" else print "can't be converted to a WDiv" can't be converted to a WDiv |