next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
ConformalBlocks :: symmetricCurveDotDivisorM0nbar

symmetricCurveDotDivisorM0nbar -- the intersection number of a symmetric F-curve C with the symmetric divisor D

Synopsis

Description

This function implements the basic formula of [KM] Corollary 4.4 for intersecting an Sn-symmetric F curve with an Sn symmetric divisor on M0,n.

i1 : D=symmetricDivisorM0nbar(6,2*B_2+B_3)

o1 = SymmetricDivisorM0nbar{2 => 2             }
                            3 => 1
                            NumberOfPoints => 6

o1 : SymmetricDivisorM0nbar
i2 : symmetricCurveDotDivisorM0nbar({3,1,1,1},D)

o2 = 5
i3 : E=symmetricDivisorM0nbar(6,B_2+3*B_3)

o3 = SymmetricDivisorM0nbar{2 => 1             }
                            3 => 3
                            NumberOfPoints => 6

o3 : SymmetricDivisorM0nbar
i4 : symmetricCurveDotDivisorM0nbar({3,1,1,1},E)

o4 = 0

Ways to use symmetricCurveDotDivisorM0nbar :