Tries to embed the target of the module map as an ideal in R, it will also return the image of 1 under the module map. These are returned as a list, the element first, and then the ideal. It uses MTries=>n (the default n value is 10) in the same way as moduleToIdeal.
i1 : R = QQ[x,y]; |
i2 : M = (ideal(x^2,x*y))*R^1; |
i3 : mat = map(M, R^1, {{1}, {1}}); o3 : Matrix |
i4 : moduleWithSectionToIdeal(mat) o4 = {x + y, ideal (y, x)} o4 : List |
Like moduleToIdeal, if ReturnMap is set to true, then the method will also return the map from M to R1.
i5 : R = QQ[x,y]; |
i6 : M = (ideal(x^2,x*y))*R^1; |
i7 : mat = map(M, R^1, {{1}, {1}}); o7 : Matrix |
i8 : L = moduleWithSectionToIdeal(mat, ReturnMap=>true) o8 = {x + y, ideal (y, x), | x y |} o8 : List |
i9 : target L#2 1 o9 = R o9 : R-module, free |
i10 : source L#2 o10 = image | x2 xy | 1 o10 : R-module, submodule of R |