next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2                  2   2 2      2     2 2    2       2      
o2 = ideal (g w - k*s, i*l*p - b , m v  - b*s , b*h r  - l , c*h*i r - 1,
     ------------------------------------------------------------------------
      2   2    2   2 2 2
     b j*o  - v , k l m  - e)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 2 3 4 3    4   3 3 3   4 4 3 4 3    3 3 4 3 3   4 4 3 3 2   2
o3 = ideal (f h i r v  - e g*k m w , a b c j n  - f h k m t , g j l n p u*w 
     ------------------------------------------------------------------------
        3 2 4   4 2 2 3 2 3 3      4 3
     - b d e , c h k m q s u  - a*b e )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.