Generated on Sat Feb 7 2015 02:01:34 for Gecode by doxygen 1.8.9.1
element.cpp File Reference

(Revision: 14362)

Go to the source code of this file.

Namespaces

 Gecode
 Gecode toplevel namespace
 

Functions

void Gecode::element (Home home, IntSharedArray n, IntVar x0, IntVar x1, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ n_{x_0}=x_1$. More...
 
void Gecode::element (Home home, IntSharedArray n, IntVar x0, BoolVar x1, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ n_{x_0}=x_1$. More...
 
void Gecode::element (Home home, IntSharedArray n, IntVar x0, int x1, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ n_{x_0}=x_1$. More...
 
void Gecode::element (Home home, const IntVarArgs &x, IntVar y0, IntVar y1, IntConLevel icl=ICL_DEF)
 Post propagator for $ x_{y_0}=y_1$. More...
 
void Gecode::element (Home home, const IntVarArgs &x, IntVar y0, int y1, IntConLevel icl=ICL_DEF)
 Post propagator for $ x_{y_0}=y_1$. More...
 
void Gecode::element (Home home, const BoolVarArgs &x, IntVar y0, BoolVar y1, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ x_{y_0}=y_1$. More...
 
void Gecode::element (Home home, const BoolVarArgs &x, IntVar y0, int y1, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ x_{y_0}=y_1$. More...
 
void Gecode::element (Home home, IntSharedArray a, IntVar x, int w, IntVar y, int h, IntVar z, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ a_{x+w\cdot y}=z$. More...
 
void Gecode::element (Home home, IntSharedArray a, IntVar x, int w, IntVar y, int h, BoolVar z, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ a_{x+w\cdot y}=z$. More...
 
void Gecode::element (Home home, const IntVarArgs &a, IntVar x, int w, IntVar y, int h, IntVar z, IntConLevel icl=ICL_DEF)
 Post propagator for $ a_{x+w\cdot y}=z$. More...
 
void Gecode::element (Home home, const BoolVarArgs &a, IntVar x, int w, IntVar y, int h, BoolVar z, IntConLevel icl=ICL_DEF)
 Post domain consistent propagator for $ a_{x+w\cdot y}=z$. More...