43 namespace Test {
namespace Float {
46 namespace MiniModelLin {
66 unsigned char x,
y,
z;
76 case LO_ACE: reg[pc->
y] = pc->
c + reg[pc->
x];
break;
77 case LO_AEC: reg[pc->
y] = reg[pc->
x] + pc->
c;
break;
78 case LO_AEE: reg[pc->
z] = reg[pc->
x] + reg[pc->
y];
break;
79 case LO_SCE: reg[pc->
y] = pc->
c - reg[pc->
x];
break;
80 case LO_SEC: reg[pc->
y] = reg[pc->
x] - pc->
c;
break;
81 case LO_SEE: reg[pc->
z] = reg[pc->
x] - reg[pc->
y];
break;
82 case LO_SE: reg[pc->
y] = -reg[pc->
x];
break;
83 case LO_MCE: reg[pc->
y] = pc->
c * reg[pc->
x];
break;
84 case LO_MEC: reg[pc->
y] = reg[pc->
x] * pc->
c;
break;
106 :
Test(
"Float::",
"MiniModel::LinExpr::"+s,4,-3,3),
112 int reg[3] = {x[0],x[1],x[2]};
113 return eval(lis, reg) == x[3];
141 :
Test(
"Float::",
"MiniModel::LinRel::"+s+
"::"+
142 Float::
Test::
str(frt0),3,-3,3),
143 l_lis(l_lis0), r_lis(r_lis0), frt(frt0) {
149 int l_reg[3] = {x[0],x[1],x[2]};
150 int l =
eval(l_lis,l_reg);
151 int r_reg[3] = {x[0],x[1],x[2]};
152 int r =
eval(r_lis,r_reg);
198 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
202 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
206 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
210 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
214 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
218 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
222 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
226 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
230 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
234 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
238 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
242 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
246 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
250 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
254 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
258 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
262 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
266 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
270 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
274 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
278 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
282 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
286 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
290 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
294 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
298 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
302 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
306 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
310 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
314 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
318 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
322 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
326 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
330 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
334 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
338 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
342 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
346 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
350 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
354 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
358 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
362 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
366 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
370 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
374 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
378 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
382 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
386 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
390 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
394 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
398 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
402 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
406 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
410 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
414 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
418 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
422 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
426 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
430 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
434 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
438 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
442 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
446 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
450 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
454 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
458 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
462 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
466 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
470 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
474 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
478 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
482 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
486 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
490 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
494 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
498 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
502 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
506 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
510 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
514 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
518 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
522 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
526 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
530 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
534 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
538 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
542 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
546 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
550 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
554 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
558 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
562 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
566 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
570 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
574 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
578 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
582 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
586 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
590 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
594 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
598 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
602 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
606 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
610 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
614 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
618 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
622 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
626 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
630 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
634 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
638 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
642 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
646 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
650 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
654 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
658 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
662 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
666 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
670 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
674 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
678 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
682 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
686 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
690 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
694 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
698 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
702 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
706 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
710 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
714 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
718 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
722 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
726 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
730 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
734 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
738 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
742 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
746 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
750 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
754 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
758 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
762 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
766 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
770 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
774 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
778 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
782 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
786 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
790 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
794 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
798 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
802 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
806 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
810 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
814 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
818 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
822 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
826 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
830 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
834 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
838 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
842 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
846 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
850 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
854 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
858 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
862 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
866 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
870 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
874 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
878 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
882 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
886 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
890 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
894 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
898 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
902 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
906 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
910 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
914 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
918 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
922 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
926 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
930 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
934 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
938 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
942 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
946 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
950 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
954 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
958 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
962 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
966 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
970 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
974 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
978 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
982 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
986 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
990 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
994 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
998 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1002 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1006 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1010 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1014 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1018 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1022 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1026 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1030 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1034 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1038 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1042 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1046 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1050 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1054 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1058 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1062 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1066 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1070 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1074 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1078 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1082 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1086 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1090 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1094 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1098 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1102 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1106 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1110 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1114 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1118 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1122 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1126 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1130 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1134 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1138 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1142 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1146 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1150 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1154 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1158 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1162 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1166 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1170 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1174 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1178 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1182 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1186 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1190 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1194 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1198 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1202 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1206 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1210 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1214 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1218 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1222 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1226 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1230 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1234 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1238 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1242 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1246 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1250 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1254 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1258 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1262 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1266 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1270 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1274 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1278 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1282 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1286 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1290 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1294 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1298 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1302 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1306 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1310 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1314 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1318 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1322 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1326 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1330 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1334 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1338 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1342 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1346 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1350 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1354 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1358 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1362 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1366 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1370 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1374 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1378 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1382 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1386 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1390 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1394 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1398 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1402 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1406 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1410 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1414 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1418 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1422 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1426 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1430 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1434 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1438 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1442 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1446 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1450 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1454 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1458 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1462 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1466 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1470 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1474 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1478 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1482 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1486 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1490 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1494 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1498 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1502 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1506 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1510 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1514 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1518 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1522 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1526 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1530 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1534 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1538 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1542 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1546 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1550 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1554 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1558 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1562 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1566 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1570 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1574 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1578 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1582 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1586 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1590 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1594 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1598 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1602 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1606 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1610 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1614 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1618 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1622 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1626 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1630 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1634 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1638 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1642 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1646 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1650 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1654 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1658 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1662 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1666 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1670 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1674 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1678 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1682 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1686 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1690 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1694 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1698 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1702 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1706 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1710 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1714 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1718 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1722 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1726 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1730 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1734 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1738 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1742 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1746 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1750 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1754 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1758 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1762 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1766 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1770 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1774 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1778 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1782 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1786 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1790 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1794 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1799 &li000[0],&li001[0],&li002[0],&li003[0],&li004[0],&li005[0],
1800 &li006[0],&li007[0],&li008[0],&li009[0],&li010[0],&li011[0],
1801 &li012[0],&li013[0],&li014[0],&li015[0],&li016[0],&li017[0],
1802 &li018[0],&li019[0],&li020[0],&li021[0],&li022[0],&li023[0],
1803 &li024[0],&li025[0],&li026[0],&li027[0],&li028[0],&li029[0],
1804 &li030[0],&li031[0],&li032[0],&li033[0],&li034[0],&li035[0],
1805 &li036[0],&li037[0],&li038[0],&li039[0],&li040[0],&li041[0],
1806 &li042[0],&li043[0],&li044[0],&li045[0],&li046[0],&li047[0],
1807 &li048[0],&li049[0],&li050[0],&li051[0],&li052[0],&li053[0],
1808 &li054[0],&li055[0],&li056[0],&li057[0],&li058[0],&li059[0],
1809 &li060[0],&li061[0],&li062[0],&li063[0],&li064[0],&li065[0],
1810 &li066[0],&li067[0],&li068[0],&li069[0],&li070[0],&li071[0],
1811 &li072[0],&li073[0],&li074[0],&li075[0],&li076[0],&li077[0],
1812 &li078[0],&li079[0],&li080[0],&li081[0],&li082[0],&li083[0],
1813 &li084[0],&li085[0],&li086[0],&li087[0],&li088[0],&li089[0],
1814 &li090[0],&li091[0],&li092[0],&li093[0],&li094[0],&li095[0],
1815 &li096[0],&li097[0],&li098[0],&li099[0],&li100[0],&li101[0],
1816 &li102[0],&li103[0],&li104[0],&li105[0],&li106[0],&li107[0],
1817 &li108[0],&li109[0],&li110[0],&li111[0],&li112[0],&li113[0],
1818 &li114[0],&li115[0],&li116[0],&li117[0],&li118[0],&li119[0],
1819 &li120[0],&li121[0],&li122[0],&li123[0],&li124[0],&li125[0],
1820 &li126[0],&li127[0],&li128[0],&li129[0],&li130[0],&li131[0],
1821 &li132[0],&li133[0],&li134[0],&li135[0],&li136[0],&li137[0],
1822 &li138[0],&li139[0],&li140[0],&li141[0],&li142[0],&li143[0],
1823 &li144[0],&li145[0],&li146[0],&li147[0],&li148[0],&li149[0],
1824 &li150[0],&li151[0],&li152[0],&li153[0],&li154[0],&li155[0],
1825 &li156[0],&li157[0],&li158[0],&li159[0],&li160[0],&li161[0],
1826 &li162[0],&li163[0],&li164[0],&li165[0],&li166[0],&li167[0],
1827 &li168[0],&li169[0],&li170[0],&li171[0],&li172[0],&li173[0],
1828 &li174[0],&li175[0],&li176[0],&li177[0],&li178[0],&li179[0],
1829 &li180[0],&li181[0],&li182[0],&li183[0],&li184[0],&li185[0],
1830 &li186[0],&li187[0],&li188[0],&li189[0],&li190[0],&li191[0],
1831 &li192[0],&li193[0],&li194[0],&li195[0],&li196[0],&li197[0],
1832 &li198[0],&li199[0],&li200[0],&li201[0],&li202[0],&li203[0],
1833 &li204[0],&li205[0],&li206[0],&li207[0],&li208[0],&li209[0],
1834 &li210[0],&li211[0],&li212[0],&li213[0],&li214[0],&li215[0],
1835 &li216[0],&li217[0],&li218[0],&li219[0],&li220[0],&li221[0],
1836 &li222[0],&li223[0],&li224[0],&li225[0],&li226[0],&li227[0],
1837 &li228[0],&li229[0],&li230[0],&li231[0],&li232[0],&li233[0],
1838 &li234[0],&li235[0],&li236[0],&li237[0],&li238[0],&li239[0],
1839 &li240[0],&li241[0],&li242[0],&li243[0],&li244[0],&li245[0],
1840 &li246[0],&li247[0],&li248[0],&li249[0],&li250[0],&li251[0],
1841 &li252[0],&li253[0],&li254[0],&li255[0],&li256[0],&li257[0],
1842 &li258[0],&li259[0],&li260[0],&li261[0],&li262[0],&li263[0],
1843 &li264[0],&li265[0],&li266[0],&li267[0],&li268[0],&li269[0],
1844 &li270[0],&li271[0],&li272[0],&li273[0],&li274[0],&li275[0],
1845 &li276[0],&li277[0],&li278[0],&li279[0],&li280[0],&li281[0],
1846 &li282[0],&li283[0],&li284[0],&li285[0],&li286[0],&li287[0],
1847 &li288[0],&li289[0],&li290[0],&li291[0],&li292[0],&li293[0],
1848 &li294[0],&li295[0],&li296[0],&li297[0],&li298[0],&li299[0],
1849 &li300[0],&li301[0],&li302[0],&li303[0],&li304[0],&li305[0],
1850 &li306[0],&li307[0],&li308[0],&li309[0],&li310[0],&li311[0],
1851 &li312[0],&li313[0],&li314[0],&li315[0],&li316[0],&li317[0],
1852 &li318[0],&li319[0],&li320[0],&li321[0],&li322[0],&li323[0],
1853 &li324[0],&li325[0],&li326[0],&li327[0],&li328[0],&li329[0],
1854 &li330[0],&li331[0],&li332[0],&li333[0],&li334[0],&li335[0],
1855 &li336[0],&li337[0],&li338[0],&li339[0],&li340[0],&li341[0],
1856 &li342[0],&li343[0],&li344[0],&li345[0],&li346[0],&li347[0],
1857 &li348[0],&li349[0],&li350[0],&li351[0],&li352[0],&li353[0],
1858 &li354[0],&li355[0],&li356[0],&li357[0],&li358[0],&li359[0],
1859 &li360[0],&li361[0],&li362[0],&li363[0],&li364[0],&li365[0],
1860 &li366[0],&li367[0],&li368[0],&li369[0],&li370[0],&li371[0],
1861 &li372[0],&li373[0],&li374[0],&li375[0],&li376[0],&li377[0],
1862 &li378[0],&li379[0],&li380[0],&li381[0],&li382[0],&li383[0],
1863 &li384[0],&li385[0],&li386[0],&li387[0],&li388[0],&li389[0],
1864 &li390[0],&li391[0],&li392[0],&li393[0],&li394[0],&li395[0],
1865 &li396[0],&li397[0],&li398[0],&li399[0],
1874 for (
int i=0;
i<
n;
i++) {
1878 }
else if (
i < 100) {
1884 for (
int i=0;
i<n/2;
i++) {
1888 }
else if (
i < 100) {
1891 (void)
new LinRel(li[2*
i],li[2*i+1],frts.
frt(),s);
virtual bool solution(const Int::Assignment &x) const
Test whether x is solution
void reset(void)
Reset iterator.
LinRel(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::FloatRelType frt0, const std::string &s)
Create and register test.
void channel(Home home, FloatVar x0, IntVar x1)
Post propagator for channeling a float and an integer variable .
const LinInstr * r_lis
Linear instruction sequence for right hand side.
Gecode::IntSet dom
Domain of variables.
const LinInstr * lis
Linear instruction sequence.
static std::string str(Gecode::FloatRelType frt)
Map float relation to string.
LinExpr(const LinInstr *lis0, const std::string &s)
Create and register test.
Gecode::FloatRelType frt(void) const
Return current relation type.
unsigned char z
Instruction arguments, y is destination (or z)
static std::string str(Gecode::ExtensionalPropKind epk)
Map extensional propagation kind to string.
Iterator for float relation types.
Gecode::IntArgs i(4, 1, 2, 3, 4)
int n
Number of negative literals for node type.
Subtract float and expression.
Create(void)
Perform creation and registration.
FloatRelType
Relation types for floats.
Base class for tests with integer constraints
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Multiply constant and expression.
Subtract expression and float.
bool testfix
Whether to perform fixpoint test.
Help class to create and register tests.
BoolVar expr(Home home, const BoolExpr &e, IntConLevel icl)
Post Boolean expression and return its value.
Node * x
Pointer to corresponding Boolean expression node.
LinOpcode o
Which instruction to execute.
Add float and expression.
virtual bool solution(const Int::Assignment &x) const
Test whether x is solution
Base class for assignments
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVal n)
Propagates .
Test linear relations over float variables
Type for representing a linear instruction.
Gecode toplevel namespace
Gecode::FloatRelType frt
Float relation type to propagate.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Add expression and float.
#define GECODE_NEVER
Assert that this command is never executed.
Expr eval(const LinInstr *pc, Expr reg[])
Evaluate linear instructions.
int max(int i) const
Return maximum of range at position i.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
int min(int i) const
Return minimum of range at position i.
Multiply constant and expression.