
Fachhochschule Hannover
University of Applied Sciences and Arts
Faculty IV - Department of Computer Science
Trust@FHH Research Group
http://trust.inform.fh-hannover.de
trust@f4-i.fh-hannover.de

Trust@FHH

Documentation Version 0.7.0

TNC@FHH

An Open Source TNC Implementation

Ingo Bente, Bastian Hellmann, Jan Bernhardt, Arne Welzel

May 3, 2010
Trust@FHH Research Group

Contents

1 Introduction 3

2 Project Structure 3

3 Building and Installing TNC@FHH 4

4 freeradius-eaptnc-patch 6
4.1 General Information . 6
4.2 Architecture . 6

5 freeradius-eapttls-patch 7
5.1 General Information . 7
5.2 RLM EAP TTLS . 8

5.2.1 File eap ttls.h . 8
5.2.2 File rlm eap ttls.c . 9
5.2.3 File ttls.c . 10

5.3 Raw flow of operations . 11

1

http://trust.inform.fh-hannover.de
mailto:trust@f4-i.fh-hannover.de

5.4 Detailed flow of operations . 12
5.5 Sequence diagrams . 26
5.6 Configuration . 28

6 naaeap 31
6.1 General Information . 31
6.2 Architecture . 31

7 tncs 31
7.1 General Information . 31
7.2 Architecture . 31

8 imunit 31
8.1 General Information . 31
8.2 Architecture . 33
8.3 General Classes . 35
8.4 IMC-specific Classes . 35
8.5 IMV-specific Classes . 36

9 IMC/V Pairs 37
9.1 TNC@FHH IMC/V Pairs Message Types 37
9.2 example . 37

9.2.1 General Information . 37
9.2.2 Architecture . 37
9.2.3 Coding the exampleimc . 38
9.2.4 Coding the exampleimv . 40

9.3 dummy . 42
9.3.1 General Information . 42
9.3.2 Architecture . 43

9.4 clamav . 43
9.4.1 General Information . 43
9.4.2 Architecture . 43

9.5 platid . 43
9.5.1 General Information . 43
9.5.2 Architecture . 44

9.6 attestation . 44
9.6.1 General Information . 44
9.6.2 Architecture . 45

9.7 hostscanner . 45
9.7.1 General Information . 45
9.7.2 Architecture . 45

10 tncsim 46
10.1 General Information . 46
10.2 Architecture . 46

2

11 Copyright and License 46

12 Acknowledgement 46

This documentation describes the TNC@FHH software version 0.7.0.
It covers all subprojects of TNC@FHH and highlights the overall project
structure. Furthermore, it gives examples how to use parts of the TNC@FHH
framework in your own projects (like coding your own IMC/V based upon
TNC@FHH). This document is (although contained in this release) still a
work in progress. We try to keep it up to date, but some sections might
refer to older versions of TNC@FHH1. Please report any issues related to
it to trust@f4-i.fh-hannover.de. This document does not describe all con-
figuration options and tasks in order to set up a TNC@FHH environment.
For installation and configuration issues, please refer to the README file
and to our wiki: http://trust.inform.fh-hannover.de/wiki.

1 Introduction

The TNC@FHH project is an open source implementation of the Trusted Network
Connect (TNC) framework which is specified by the Trusted Computing Group (TCG).
TNC@FHH allows you to provision access to a network based upon factors like the
user credentials and the requesting endpoint’s integrity state.

The following TNC components and their respective interfaces are implemented by
TNC@FHH:

• IMCs (IF-IMC 1.2)

• IMVs (IF-IMV 1.2)

• TNCS (IF-TNCCS 1.1)

• NAA (IF-T EAP 1.1)

On the Policy Decision Point, TNC@FHH works as an extension to FreeRADIUS.
FreeRADIUS handles the user authentication and all of the standard EAP message
processing. TNC@FHH is plugged into FreeRADIUS via a new EAP module that
supports TNC.

2 Project Structure

TNC@FHH consists of several subprojects:

freeradius-eaptnc-patch Patch for FreeRADIUS to add support for TNC. This is
basically a new EAP module that handles the TNC traffic and forwards the
TNC specific data to the naaeap module. The patch is implemented in C.

1E.g., some of the UML diagrams refer to version 0.6.0 since there were no substantial changes.

3

mailto:trust@f4-i.fh-hannover.de
http://trust.inform.fh-hannover.de/wiki

freeradius-eapttls-patch Patch for FreeRADIUS to add support for multiple EAP-
methods to be tunneld within one EAP-TTLS channel. This explicitly supports
to chain multiple EAP methods, i.e. EAP-MD5 (for user authentication) and
then EAP-TNC (for endpoint assessment) in one EAP-TTLS tunnel. The patch
is implemented in C.

naaeap A shared library that is used by the EAP TNC module. It parses the EAP-
TNC data, handles fragmentation and forwards the parsed data (i.e. a TNCCS
message) to the tncs module. Outgoing TNCCS messages are in turn properly
encapsulated within EAP TNC. naaeap is implemented in C++.

tncs tncs is a shared library that is used by the naaeap module. It represents the
TNCS component within the TNC architecture. tncs handles the communication
with the IMVs that are installed on the PDP and the TNCC on the AR. tncs is
implemented in C++.

imunit imunit is a framework for developing IMC/V pairs. All TNC@FHH IMC/V
pairs are based upon imunit. imunit is implemented in C++.

IMC/V pairs TNC@FHH comes with a set of working IMC/V pairs:

• example: A hello world example of an imc/v pair.
• dummy: Another hello world example with a bit more functionality.
• clamav: Checks the status of the AV software clamav.
• platid: Allows to authenticate an endpoint based upon X.509 certificates

(supports TPMs)
• attestation: Allows to verify the integrity of an endpoint based on TPM

attestation (using AIKs).
• hostscanner: Allows to check the status of arbitrary ports on an endpoint.

tncsim This is a simple test program that acts both as TNCC and TNCS, but without
an NAR or NAA component. It was developed to ease the testing of IMC/V
pairs. It uses libtnc as client and TNC@FHH tncs as server. tncsim can load both
IMCs and IMVs and starts a single TNC handshake by calling beginHandhake()
for each IMC. tncsim is implemented in C++.

Figure 1 gives an overview of the existing subprojects and der dependencies.
Detailed information about each subproject is given in the following sections.

3 Building and Installing TNC@FHH

Since version 0.7.0, there is only one TNC@FHH tarball available that contains all
software components. This makes the build and install process a lot easier. The
following prerequisites should be fulfilled in order to be able to build all TNC@FHH
components:

4

TNC@FHH Project Structure (version 0.7.0)

naaeap

tncs

freeradius-eapttls-patch

imunit

example

dummy

platid

hostscanner

clamav

IMC/V pairs

Patches for FreeRADIUS

uses

TNC@FHH core modules

TNC@FHH executables

tncsim

freeradius-eaptnc-patch

attestation

Figure 1: Project Structure of TNC@FHH

• cmake
(use the version provided by your distribution)

• log4cxx (mandatory for all components)
(use the version provided by your distribution)

• xerces-c (needed by tncs)
(use the version provided by your distribution)

• trousers >= 0.3.4 (needed by attestation IMC)
http://sourceforge.net/projects/trousers/

• libtnc >= 1.24 (needed by tncsim)
http://sourceforge.net/projects/libtnc/

To build (and optionally install) TNC@FHH with its default configuration, just do
the following:
// extract archive
tar -xzf tncfhh -0.7.0. tar.gz
// switch to directory
cd tncfhh -0.7.0
// create build directory
mkdir build
// switch to build directory
cd build
// build (and optionally install) TNC@FHH
cmake ../
make
make install

This will build (and install) all IMCs, all IMVs, imunit, naaeap, tncs and tncsim.
This will not build or install any of the FreeRADIUS patches. The process to patch
your FreeRADIUS server in order to use TNC@FHH is described in our wiki2.

There are some cmake variables available to configure which TNC@FHH components
are actually build:

2http://trust.inform.fh-hannover.de/wiki/index.php/Main_Page

5

http://sourceforge.net/projects/trousers/
http://sourceforge.net/projects/libtnc/
http://trust.inform.fh-hannover.de/wiki/index.php/Main_Page

• TNCFHH BUILD IMCS (ON/OFF)
Controls whether IMCs are built or not. Default is ON.

• TNCFHH BUILD IMVS (ON/OFF)
Controls whether IMVs are built or not. Default is ON.

• TNCFHH BUILD SERVER (ON/OFF)
Controls whether naaeap and tncs are built or not. Default is ON.

• TNCFHH BUILD TNCSIM (ON/OFF)
Controls whether tncsim is built or not. Default is ON (implies that naaeap and
tncs are built as well).

If you get error messages during the build process, make sure that you fulfill the
necessary prerequisites. E.g. make sure that you have libtnc if you want to build
tncsim or trousers for the attestation IMC. If you want to exclude single IMCs or
IMVs from the build process, just comment out the corresponding add subdirectory
statement in the CMakeLists.txt file (e.g. in imcv/attestation/CMakeLists.txt:4).

In order to actually use the TNC@FHH components, you need

• a patched FreeRADIUS server on the PDP

• a 802.1X supplicant that supports TNC (we suggest wpa supplicant3). Note that
you need wpa supplicant version 0.7.1 or higher in order to use the platid and
attestation IMC.

• a 802.1X compatible switch

Details on how to set up a working TNC environment are available in our wiki4.

4 freeradius-eaptnc-patch

4.1 General Information

The patch adds a new EAP-TNC method to FreeRADIUS. An outdated version of this
patch is already contained in the FreeRADIUS source tree. However, to get the latest
version of TNC@FHH running, you will need to apply the patch that is contained in
this TNC@FHH release. The EAP-TNC method can be used as tunneld EAP method,
e.g. within EAP-TTLS.

4.2 Architecture

The architecture is quite simple. The EAP module just hooks into FreeRADIUS by
implementing the necessary functions in rlm eap tnc.c and letting FreeRADIUS know
about them:

3http://hostap.epitest.fi/wpa_supplicant/
4http://trust.inform.fh-hannover.de/wiki

6

http://hostap.epitest.fi/wpa_supplicant/
http://trust.inform.fh-hannover.de/wiki

/*
* The module name should be the only globally exported symbol.
* That is , everything else should be ’static ’.
*/
EAP_TYPE rlm_eap_tnc = {
"eap_tnc",
tnc_attach , /* attach */
tnc_initiate , /* Start the initial request */
NULL , /* authorization */
tnc_authenticate , /* authentication */
tnc_detach /* detach */

};

• tnc attach This function is called when an instance of the EAP-TNC-module
is created. This happens when FreeRADIUS parses the corresponding EAP
configuration file (eap.conf). The function initializes the naaeap module.

• tnc initiate This function is called when a new handshake with EAP-TNC is
about to begin. The handshake is triggered by an incoming EAP-Response/Identity
message from the client. The function checks for the presence of a secure tun-
nel, so that EAP-TNC is not run standalone but within a secure EAP-method.
Then it calculates the connection ID for this handshake and creates the first
EAP-TNC-Request message which is sent to the client.

• tnc authenticate This function is called when a EAP-TNC-Response message
was received. It basically forwards the EAP-TNC data to the naaeap module and
composes an appropriate EAP-Response message. When the TNC handshake
is finished, the result is forwarded to FreeRADIUS via the configuration-item
TNC-Status for the corresponding connection. TNC-Status can have the values
Access or Isolate. This value will than be processed by FreeRADIUS which
maps it to a VLAN-assigment for the current client.

• tnc detach This function handles the destruction of an instance of the EAP-
TNC-module. This happens when FreeRADIUS is stopped. It deinitializes the
naaeap module.

The code in eap tnc.c just (de)marshalls the TNC payload in the EAP packet.
The main logic described above is located in rlm eap tnc.c. For further details,
please refer to the sourcecode.

5 freeradius-eapttls-patch

5.1 General Information

This section describes the concept and implementation of the EAP-TTLS-patch for
FreeRADIUS.

7

Goal of the patch

The main goal of the patch is to allow multiple inner authentication methods inside
an EAP-TTLS-tunnel. This could be EAP-MD5 as a user authentication method,
followed by EAP-TNC as a hardware or platform authentication method.

Specification of the patch

The patch in the current version is implemented to do any authentication methods sup-
ported by the EAP-module of FreeRADIUS as the first inner method, and EAP-TNC
afterwards. EAP-TNC is only started if the first method was successful, otherwise
the authentication request of the supplicant will result in an Access-Reject. If the
first inner method was successful, then the outgoing Access-Accept is intercepted and
cached, and a new authentication with EAP-TNC is started inside the tunnel.

Not implemented

At the moment, there is no support for the use of non-EAP-methods as the first inner
authentication method. Doing so will not properly start EAP-TNC as the second inner
method.

Used sources

The patch was built upon FreeRADIUS version 2.1.7 and tested with wpa supplicant
version 0.6.9 on Ubuntu 9.04 and 9.10.

Documentation in the Trust@FHH-wiki

There are How To’s for building and configuring the EAP-TTLS-patch in our wiki:
http://trust.inform.fh-hannover.de/wiki/index.php/Main_Page.

5.2 RLM EAP TTLS

This section describes the implementation and the changes and additions to the original
EAP-TTLS-module source code.

5.2.1 File eap ttls.h

struct ttls tunnel t This header-file defines the data-structure of an TTLS-tunnel.
The description of each item was copied from the comments in the file, if available.

Original attributes

VALUE PAIR* username The username (extracted from the EAP-Identity).

VALUE PAIR* state The state of the authentication.

VALUE PAIR* reply Storage for the tunneled reply.

8

http://trust.inform.fh-hannover.de/wiki/index.php/Main_Page

int authenticated Used for MS-CHAP2-Successes.

int default eap type Type-ID of the default tunneled EAP-type.

int copy request to tunnel Use SOME of the request attributes from outside of the
tunneled session in the tunneled request.

int use tunneled reply Use the reply attributes from the tunneled session in the non-
tunneled reply to the client.

const char* virtual server Virtual server for inner tunnel session.

Added attributes

const char* tnc virtual server The virtual server for EAP-TNC as the second inner
method.

VALUE PAIR* auth reply A cache storage of the last reply of the first inner method.

int auth code A cache storage for the reply-code of the first inner method.

int doing tnc The status, if currently doing EAP-TNC.

5.2.2 File rlm eap ttls.c

struct rlm eap ttls t This file defines the configuration-items of the EAP-TTLS-
module, and how they are parsed and initialized. The configuration-file is /usr/lo-
cal/etc/raddb/eap.conf as default.

Original configuration-items

char* default eap type name Default tunneled EAP type (by its name).

int default eap type Type-ID of the default tunneled EAP type.

int use tunneled reply Use the reply attributes from the tunneled session in the non-
tunneled reply to the client.

int copy request to tunnel Use SOME of the request attributes from outside of the
tunneled session in the tunneled request.

char* virtual server Virtual server for inner tunnel session.

Added configuration-items

char* tnc virtual server Virtual server for the second inner tunnel method, which is
EAP-TNC.

9

static int eapttls authenticate(void* arg, EAP HANDLER* handler) The file rlm-
eap ttls.c also implements the main-authentication-method for EAP-TTLS, which

handles the establishment of the EAP-TLS-tunnel and then forwards the request to
the method that handles the inner authentication method(s), which will be described
in the next section.

5.2.3 File ttls.c

This file implements the processing of the inner authentication method(s), which means
the methods inside the TLS-tunnel.

int eapttls process(EAP HANDLER* handler, tls session t* tls session)

Original behaviour This method processes the tunneled method. Therefore it creates
a fake-packet and tries to look up a username. First it looks in the incoming request,
then in the tunnel-data, and at last in the EAP-message if it’s an EAP-Identity.
After that it copies some of the request attributes from outside the tunnel to inside
the tunnel (if configured to do so). Then it sets the virtual server, which has to
process the tunneled authentication (if configured, else it is the DEFAULT virtual
server). The next step is the concrete authentication, which is done by calling the
authenticate-method of FreeRADIUS with the fake-packet. Afterwards, the reply is
used to determine the result-code of the method.

Added behaviour The method was changed in two places to allow two inner methods
in sequence. It now checks if EAP-TNC as a second inner authentication method is
running, and then sets the virtual server to the configured server for EAP-TNC. This
causes the authentication of the request to use the virtual server inner-tunnel-second,
which is configured to only allow EAP-TNC-packets.

The second change is before the reply is used to determine the result-code of the
method. First, it is checked if an virtual server for EAP-TNC is configured. Otherwise,
only the first inner method is done.

Then, it is checked if the result of the last request was an PW AUTHENTICATION-
ACK and if TNC as a second inner method is not running. If so, the value pairs and

the code of that request is cached, and afterwards the method start tnc is called.
Then it is checked, if TNC as a second method is running and the result of the

last request was either PW AUTHENTICATION ACK or PW AUTHENTICATION-
REJECT. If so, the method stop tnc is called.

static REQUEST* start tnc(EAP HANDLER* handler, ttls tunnel t* t) Starts
EAP-TNC as a second inner method. Creates a new fake-request out of the original
incoming request (via EAP HANDLER). Then it creates a new EAP-START-packet
with the code = PW EAP REQUEST and the type of EAP-TNC. This message is then
processed by rad authenticate, which then calls the the EAP-module. It recognizes

10

the EAP-START-packet and sets the type of the request to EAP-Identity. At the end,
an Access-Challenge is send to the supplicant, which is an EAP-Identity-Request.

static REQUEST* stop tnc(EAP HANDLER* handler, ttls tunnel t* t) Stops EAP-
TNC as a second inner method. It copies the value pairs from the cached Access-Accept
of the first inner method to the Access-Accept/Reject package of EAP-TNC.

5.3 Raw flow of operations

This chapter will describe the flow of operations during an ongoing EAP-TTLS au-
thentication with two inner methods in general.

1. The supplicant connects to the network and runs wpa supplicant.

2. Regarding to its configuration, FreeRADIUS runs EAP-TTLS as it is the default
EAP type. Therefore it calls the appropriate authenticate-method of the EAP-
TTLS-module.

3. The module itself first starts a EAP-TLS-session to establish the tunnel.

4. When the TLS-handshake is done, the tunnel is ready for the inner methods to
take place.

5. The first inner method is started, by sending an EAP-Request with the config-
ured default EAP-type of the EAP-TTLS-module to the supplicant.

6. The first inner method is processed until it is finished.

7. If the first method was successful, the Access-Accept, which would be send to
the supplicant, is intercepted and cached. Otherwise, the second method won’t
start, as a successful user authentication is mandatory.

8. Then, a new EAP-TNC-authentication inside the TLS-tunnel is started, by
sending a fake-EAP-Start-packet to the virtual server that handles EAP-TNC.
The corresponding EAP-message is build manually and is created as an EAP-
Response with the type EAP-TNC and the data-length of zero. This triggers
the EAP-module to change that to an EAP-Identity-packet, which then starts
EAP-TNC.

9. The EAP-TNC handshake then takes place until it is finished.

10. When the EAP-TNC-authentication is finished, the value-pairs of the cached
Access-Accept of the first inner method are copied to the current request.

11. The modified Access-Accept or respectively Access-Reject is then send to the
PEP.

12. The supplicant is now authenticated both as by its user and by its platform.

11

5.4 Detailed flow of operations

In this chapter, the flow of operations inside FreeRADIUS is shown with the help of the
debug-output and the corresponding sourcecode. In some cases, only the code for the
debug-output itself and a general description is given, but with the given sourcecode-
file and method name, a more precise analysis of the code is possible.

Start of EAP-TTLS

1. Debug-Output:
Ready to process requests.

Description:
First output after initialization. FreeRADIUS now runs in its main loop until
exit.

Source-Code:
main/event.c, event status():
DEBUG("Ready to process requests.");

2. Debug-Output:
rad recv: Access-Request packet from host 192.168.1.6 port 1024,
id=52, length=217

Description:
First package from supplicant is received.

Source-Code:
main/listen.c, stats socket recv() and lib/radius.c, rad recv():
DEBUG("rad_recv: %s packet from host %s port %d", ...)
DEBUG(", id=%d, length =%d\n", ...)

12

3. Debug-Output:
+- entering group authorize ...

Description:
At first, the request is processed by all configured authorizing-instances. These
are defined in the authorize-section in the DEFAULT-virtual server-configuration.

Source-Code:
main/modules.c, indexed modcall(int, int, REQUEST*) and main/modcall.c,
modcall(int, modcallable*, REQUEST*):
RDEBUG2("%.*s- entering %s %s {...}",

4. Debug-Output:
++[preprocess] returns ok

Description:
The preprocess-module sanitizes the packet. It returns RLM MODULE OK, which
means that the next authorization module is called.

Source-Code:
rlm preprocess/rlm preprocess.c, preprocess authorize(void*, REQUEST*):
myresult = call_modsingle(child ->method , sp, request ,
default_component_results[component]);

handle_result:
RDEBUG2("%.*s[%s] returns %s",

5. Debug-Output:
[eap] EAP packet type response id 1 length 12
[eap] No EAP Start, assuming it’s an on-going EAP conversation
++[eap] returns updated

Description:
The EAP-module and its authorize-method handles EAP-Start-messages and
the extraction of the username out of the EAP-Identity-packet. It returns
RLM MODULE UPDATED, as the packet has to be further processed.

Source-Code:
rlm eap/rlm eap.c, eap authorize(void*, REQUEST*):
RDEBUG2("EAP packet type %s id %d length %d", ...);

rlm eap/rlm eap.c, eap start():
RDEBUG2("No EAP Start , assuming it’s an on-going EAP conversation");

6. Debug-Output:
[files] users: Matched entry tncuser at line 167

13

++[files] returns ok

Description:
The files-module searches the users-file for the current username (tncuser).

Source-Code:
rlm files/rlm files.c, file authorize(void*, REQUEST*) and rlm files/rlm-
files.c, file common(...):
RDEBUG2("%s: Matched entry %s at line %d", ...)

14

Establishing the tunnel for EAP-TTLS

1. Debug-Output:
+- entering group authenticate ...

Description:
The authenticate-section of the policy is used on the packet.

Source-Code:
main/modules.c, indexed modcall(int, int, REQUEST*) and main/modcall.c,
modcall(int, modcallable*, REQUEST*):
RDEBUG2("%.*s- entering %s %s {...}",

2. Debug-Output:
[eap] EAP Identity
[eap] processing type tls
[tls] Initiate
[tls] Start returned 1
++[eap] returns handled

Description:
As EAP-TTLS is configured as the default type for EAP in FreeRADIUS, it first
starts a TLS-authentication to establish the tunnel.

Source-Code:
eap.c, eaptype select():
switch(eaptype ->type) {
case PW_EAP_IDENTITY:
RDEBUG2("EAP Identity");

eap.c, eaptype call():
RDEBUG2("processing type %s", atype ->typename);

rlm eap tls.c, eaptls initiate:
RDEBUG2("Initiate");
RDEBUG2("Start returned %d", status);

15

3. Debug-Output:
Sending Access-Challenge of id 52 to 192.168.1.6 port 1024
EAP-Message = 0x010200061520
Message-Authenticator = 0x00000000000000000000000000000000
State = 0xa0b5f0a6a0b7e5e1ed41351c180f735a
Finished request 0.

Description:
The first EAP-TTLS-packet which is send to the supplicant.

Source-Code:
lib/radius.c, rad send(...):
DEBUG("Sending %s of id %d to %s port %d\n", ...)

main/event.c, request post handler(...):
RDEBUG2("Finished request %d.", request ->number);

16

Running EAP-MD5 as the first inner method

1. Debug-Output:
+- entering group authenticate {...}
[eap] Request found, released from the list
[eap] EAP/ttls
[eap] processing type ttls
[ttls] Authenticate
[ttls] processing EAP-TLS
[ttls] eaptls verify returned 7
[ttls] Done initial handshake
[ttls] eaptls process returned 7
[ttls] Session established. Proceeding to decode tunneled attributes.

Description:
The TLS-tunnel is established. Now the inner method(s) are processed.

Source-Code:
rlm eap ttls/rlm eap ttls.c, eapttls authenticate():
RDEBUG2("Session established. Proceeding to decode tunneled attributes.");

2. Debug-Output:
[ttls] Setting default EAP type for tunneled EAP session.

Description:
The configured EAP-type for the first inner authentication method is set (which
is EAP-MD5 in this case).

Source-Code:
rlm eap ttls/ttls.c, eapttls process():
if (!fake ->username) {

if (!t->username) {
if (t->default_eap_type != 0) {

RDEBUG("Setting default EAP type for tunneled EAP
session.");

vp = paircreate(PW_EAP_TYPE , PW_TYPE_INTEGER);
rad_assert(vp != NULL);
vp->vp_integer = t->default_eap_type;
pairadd (&fake ->config_items , vp);

17

3. Debug-Output:
[ttls] Sending tunneled request
EAP-Message = 0x0200000c01746e6375736572
FreeRADIUS-Proxied-To = 127.0.0.1
User-Name = "tncuser"

Description:
The packet is proxied to the virtual server configured for EAP-TTLS.

Source-Code:
rlm eap ttls/ttls.c, eapttls process():
if ((debug_flag > 0) && fr_log_fp) {

RDEBUG("Sending tunneled request");
debug_pair_list(fake ->packet ->vps);

4. Debug-Output:
server inner-tunnel {

Description:
The virtual server for the inner method (configured in /usr/local/etc/raddb-
/sites-enabled/inner-tunnel) starts its processing.

Source-Code:
main/even.c, radius handle request(...):
if (request ->server) RDEBUG("server %s \{",

5. Debug-Output:
+- entering group authorize {...}
[eap] EAP packet type response id 0 length 12
[eap] No EAP Start, assuming it’s an on-going EAP conversation
++[eap] returns updated
[files] users: Matched entry tncuser at line 167
++[files] returns ok
Found Auth-Type = EAP

Description:
Same processing as in section 5.4.

18

6. Debug-Output:
+- entering group authenticate {...}
[eap] EAP Identity
[eap] processing type md5
rlm eap md5: Issuing Challenge
++[eap] returns handled

Description:
EAP-MD5 is started; returns RLM MODULE HANDLED, as the packet has
NOT to be further processed.

Source-Code:
eap.c, eaptype select():
switch(eaptype ->type) \{
case PW_EAP_IDENTITY:
RDEBUG2("EAP Identity");

eap.c, eaptype call():
RDEBUG2("processing type %s", atype ->typename);
switch (handler ->stage) {

case INITIATE:
if (!atype ->type ->initiate(atype ->type_data , handler))

rcode = 0;
break;

rlm eap md5.c, md5 initiate:
DEBUG2("rlm_eap_md5: Issuing Challenge");

7. Debug-Output:
} # server inner-tunnel

Description:
The virtual server ends its processing, as EAP-MD5 returned the state, that the
request is fully processed..

Source-Code:
main/event.c, radius handle request(...):
if (request ->server) RDEBUG("} # server %s", ...)

19

Finishing EAP-MD5 and starting EAP-TNC

1. Debug-Output:
[ttls] Reply-Code of the first inner method was:
2 (PW AUTHENTICATION ACK)
EAP-TNC as second inner authentication method starts now

Description:
The Access-Accept of the first method is intercepted and the second method is
started. The value-pairs of the Access-Accept are copied and stored in a field in
the tunnel-structure (ttls tunnel t). Inside the start tnc()-method,

Source-Code:
rlm eap ttls/ttls.c, eapttls process(EAP HANDLER*, tls session t*):
if (t->tnc_virtual_server) {

if (fake ->reply ->code == PW_AUTHENTICATION_ACK
&& t->doing_tnc == FALSE) {

RDEBUG2("Reply -Code of the first inner method was: %d
(PW_AUTHENTICATION_ACK)", fake ->reply ->code);

rlm eap ttls/ttls.c, start tnc(EAP HANDLER*, ttls tunnel t*):
RDEBUG2("EAP -TNC as second inner authentication method starts now");

2. Debug-Output:
Got tunneled request
FreeRADIUS-Proxied-To = 127.0.0.1

Description:
The new request is marked as fake-request.

Source-Code:
rlm eap ttls/ttls.c, start tnc(EAP HANDLER*, ttls tunnel t*):
VALUE_PAIR *vp;
vp = pairmake("Freeradius -Proxied -To", "127.0.0.1", T_OP_EQ);
if (vp) {

pairadd (&fake ->packet ->vps , vp);
}

if ((debug_flag > 0) && fr_log_fp) {
RDEBUG("Got tunneled request");

debug_pair_list(fake ->packet ->vps);
}

20

3. Debug-Output:
No debug-output, only the source-code will be described here.

Description:
This code creates a new request out of the original Access-Accept of the first
inner method. It sets the processing virtual server to the second EAP-module-
instance, eap tnc, so that only EAP-TNC-packets are allowed in the second
inner authentication. Therefore it creates a new EAP-Start-packet with type
EAP-TNC and length = 0. This will trigger the EAP-module to recognize a
EAP-Start-packet and then send a EAP-Identity-Request to the supplicant.

Soure-Code:
rlm eap ttls/ttls.c, eapttls process(EAP HANDLER*, tls session t*):
REQUEST* fake = request_alloc_fake(request);

fake ->server = t->tnc_virtual_server;

VALUE_PAIR *eap_msg;
eap_msg = paircreate(PW_EAP_MESSAGE , PW_TYPE_OCTETS);

eap_msg ->vp_octets [0] = PW_EAP_RESPONSE;
eap_msg ->vp_octets [1] = 0x00;
eap_msg ->vp_octets [4] = PW_EAP_TNC;
eap_msg ->length = 0;

pairadd (&(fake ->packet ->vps), eap_msg);

4. Debug-Output:
+- entering group authorize {...}
++[preprocess] returns ok

Description:
The authorize-policy is applied to the new fake-request by the virtual server for
EAP-TNC.

Source-Code:
ttls.c, start tnc():
rad_authenticate(fake);

21

5. Debug-Output:
[eap tnc] Got EAP START message

Description:
The EAP-Start-packet is recognized and changed to an EAP-Identity-packet. It
is then send to the supplicat as an Access-Challenge.

Source-Code:
rlm eap/eap.c, eap start():
if ((eap_msg ->length == 0) || (eap_msg ->length == 2)) {

RDEBUG2("Got EAP_START message");

6. Debug-Output:
++[eap tnc] returns handled

Description:
Returns RLM MODULE HANDLED, as the packet has NOT to be further pro-
cessed.

Source-Code:
main/modcall.c, int modcall(int component, modcallable *c, REQUEST *re-
quest):
handle_result:

RDEBUG2("%.*s[%s] returns %s",
stack.pointer + 1, modcall_spaces ,
child ->name ? child ->name : "",
fr_int2str(rcode_table , myresult , "??"));

7. Debug-Output:
[ttls] Got tunneled Access-Challenge

Description:
The EAP-Identity-Request is send to the client.

Source-Code:
ttls.c, process reply():
switch (reply ->code) {

case PW_ACCESS_CHALLENGE:
RDEBUG("Got tunneled Access -Challenge");
rcode = RLM_MODULE_HANDLED;

22

Ongoing EAP-TNC authentication

1. Debug-Output:
server inner-tunnel-second {
+- entering group authorize {...}
++[preprocess] returns ok
[eap tnc] EAP packet type response id 1 length 12
[eap tnc] No EAP Start, assuming it’s an on-going EAP conversation
++[eap tnc] returns updated
Found Auth-Type = eap tnc
+- entering group authenticate {...}
[eap tnc] EAP Identity
[eap tnc] processing type tnc
tnc initiate: 1268134592

Description:
The virtual server for the second inner method is used → inner-tunnel-second.
That one uses the second instance of the EAP-module (eap tnc) to process the
incoming request. At the end, the EAP-TNC-module is called the first time.

Source-Code:
rlm eap tnc.c, tnc initiate():
DEBUG("tnc_initiate: %ld", handler ->timestamp);

2. Debug-Output:
++[eap tnc] returns handled
} # server inner-tunnel-second
[ttls] Got tunneled reply code 11

Description:
The virtual server for the second inner method has finished the processing of the
request. Afterwards, the reply is processed by the EAP-TTLS-module.

Source-Code:
ttls.c, eapttls process():
if ((debug_flag > 0) && fr_log_fp) {

fprintf(fr_log_fp , "} # server %s\n",
(fake ->server == NULL) ? "" : fake ->server);

RDEBUG("Got tunneled reply code %d", fake ->reply ->code);

debug_pair_list(fake ->reply ->vps);
}

23

Finishing EAP-TNC and sending the Access-Accept packet

1. Debug-Output:
++[eap tnc] returns ok

Description:
Returns RLM MODULE OK, as the packet has to be further processed by the
post-authenticate-section.

Source-Code:
main/modcall.c, int modcall(int component, modcallable *c, REQUEST *re-
quest):
handle_result:

RDEBUG2("%.*s[%s] returns %s",
stack.pointer + 1, modcall_spaces ,
child ->name ? child ->name : "",
fr_int2str(rcode_table , myresult , "??"));

2. Debug-Output:
+- entering group post-auth {...}
++? if (control:TNC-Status == "Access")
? Evaluating (control:TNC-Status == "Access") -> TRUE
++? if (control:TNC-Status == "Access") -> TRUE
++- entering if (control:TNC-Status == "Access") {...}
+++[reply] returns noop
++- if (control:TNC-Status == "Access") returns noop
++ ... skipping elsif for request 10: Preceding "if" was taken
} # server inner-tunnel-second

Description:
The post-authenticate subsection of the virtual-server for EAP-TNC; as the at-
tribute TNC-Status is set to either access or isolate by the EAP-TNC-module,
it sets the VLAN-settings in the Access-Accept.

Source-Code:
main/modcall.c, modcall(...):
if (radius_evaluate_condition(request , myresult , 0, &p, TRUE , &condition)) {

RDEBUG2("%.*s? %s %s -> %s",
stack.pointer + 1, modcall_spaces ,
child ->type == MOD_IF ? "if" : "elsif",
child ->name , (condition != FALSE) ? "TRUE" : "FALSE");

3. Debug-Output:
[ttls] Reply-Code of EAP-TNC as the second inner method was:
2 (PW AUTHENTICATION ACK)
EAP-TNC as second inner authentication method stops now

24

Description:
The result of the second authentication is success, so both inner authentications
were successfull.

Source-Code:
rlm eap ttls/ttls.c, eapttls process(EAP HANDLER*, tls session t*:
} else if (t->doing_tnc == TRUE

&& (fake ->reply ->code == PW_AUTHENTICATION_ACK || fake ->reply ->code ==
PW_AUTHENTICATION_REJECT)) {

RDEBUG2("Reply -Code of EAP -TNC as the second inner method was:
%d (%s)", fake ->reply ->code ,

fake ->reply ->code == PW_AUTHENTICATION_ACK ? "
PW_AUTHENTICATION_ACK" : "
PW_AUTHENTICATION_REJECT");

rlm eap ttls/ttls.c, stop tnc(...):
RDEBUG2("EAP -TNC as second inner authentication method stops now");

4. Debug-Output:
[ttls] Got tunneled Access-Accept
++[eap] returns ok

Description:
The EAP-TTLS-module gets the fake-request back and processes the reply-
content. Afterwards the EAP-module is finished, as the request was successful.

Source-Code:
ttls.c, process reply():
switch (reply ->code) {

case PW_AUTHENTICATION_ACK:
RDEBUG("Got tunneled Access -Accept");
rcode = RLM_MODULE_OK;

25

5. Debug-Output:
Sending Access-Accept of id 62 to 192.168.1.6 port 1024
Message-Authenticator = 0x00000000000000000000000000000000
User-Name = "tncuser"
Tunnel-Type:0 = VLAN
Tunnel-Medium-Type:0 = IEEE-802
Tunnel-Private-Group-Id:0 = "96"
EAP-Message = 0x030b0004

Description:
The Access-Accept is send to the PEP, with the configured VLAN-settings.

Source-Code:
lib/radius.c, rad send(...):
DEBUG("Sending %s of id %d to %s port %d\n", ...)

5.5 Sequence diagrams

The following sequence diagrams show the message flow between the AR, the PEP
and the PDP. The IDs of the EAP- and RADIUS-messages correspond to the provided
Wireshark-captures.

Remarks

The (fake) EAP-Response/Identity of the AR in the EAP-packet with ID 26 is created
by wpa supplicant. As a response to the end of the TLS-authentication, a fake EAP-
Request/Identity is created inside of wpa supplicant, to start the inner method. The
following debug-output is from wpa supplicant, showing this behaviour.
EAP: Received EAP -Request id=26 method =21 vendor =0 vendorMethod =0
...
EAP -TTLS: TLS done , proceed to Phase 2
EAP -TTLS: Derived key - hexdump(len =64): [REMOVED]
EAP -TTLS: received 0 bytes encrypted data for Phase 2
EAP -TTLS: empty data in beginning of Phase 2 - use fake EAP -Request Identity
EAP -TTLS: Phase 2 EAP Request: type=1
EAP: using real identity - hexdump_ascii(len=7):

74 6e 63 75 73 65 72 tncuser
EAP -TTLS: AVP encapsulate EAP Response - hexdump(len =12): 02 00 00 0c 01 74 6e 63

75 73 65 72

26

Figure 2: EAP TTLS patch packet flow

27

5.6 Configuration

This chapter describes the configuration of FreeRADIUS and wpa supplicant for the
use of multiple inner authentication methods.

FreeRADIUS

/usr/local/etc/raddb/users The users-file has to contain an entry for a user with a
password, so that a user-authentication can take place (EAP-MD5 for example).
User -entry for EAP -MD5
tncuser Cleartext -Password := password

/usr/local/etc/raddb/eap.conf In the configuration of the EAP-module, several
things are important. The default EAP-type has to be TTLS, and there MUST NOT
be a configured instance of EAP-TNC. This allows a seperation of the incoming re-
quests, as EAP-TNC-packets are only allowed as the second inner method, and are
NOT allowed as the first inner method. Another important setting is the configuration
of the virtual-servers for the EAP-TTLS-module. At the end, a second instance of the
EAP-module has to be configured, with EAP-TNC as the default EAP-type and a
configured EAP-TNC-module.
eap {

...
default_eap_type = ttls
...

Comment out the section for TNC
tnc {
}

...

ttls {
default_eap_type = md5
...
use_tunneled_reply = yes
#
virtual_server = "inner -tunnel"
tnc_virtual_server = "inner -tunnel -second"

}

...
}

eap eap_tnc {
default_eap_type = tnc

tnc {
}

}

/usr/local/etc/raddb/sites-enabled/inner-tunnel The configuration of the inner tun-
nel has to be the same as the default-one delivered with FreeRADIUS.

28

/usr/local/etc/raddb/sites-enabled/inner-tunnel-second This virtual server han-
dles the EAP-TNC-packets of the second inner authentication method. Important
is the usage of the second EAP-module instance (eap tnc) in the authorize and au-
thenticate-section. In the post-auth-section the content is the same as in the default
configuration for EAP-TNC, when used as the only inner authenticaton method.
-*- text -*-
##
#
This is a virtual server that handles *only* EAP -TNC
requests.
#
Id
#
##

server inner -tunnel -second {

Authorization. First preprocess (hints and huntgroups files),
then realms , and finally look in the "users" file.
#
The order of the realm modules will determine the order that
we try to find a matching realm.
#
Make *sure* that ’preprocess ’ comes before any realm if you
need to setup hints for the remote radius server
authorize {
#
The preprocess module takes care of sanitizing some bizarre
attributes in the request , and turning them into attributes
which are more standard.
#
It takes care of processing the ’raddb/hints ’ and the
’raddb/huntgroups ’ files.
#
It also adds the {Client -IP-Address} attribute to the request.
preprocess

eap_tnc {
ok = return

}
}

Authentication.
#
#
This section lists which modules are available for authentication.
Note that it does NOT mean ’try each module in order ’. It means
that a module from the ’authorize ’ section adds a configuration
attribute ’Auth -Type := FOO ’. That authentication type is then
used to pick the apropriate module from the list below.
#

In general , you SHOULD NOT set the Auth -Type attribute. The server
will figure it out on its own , and will do the right thing. The
most common side effect of erroneously setting the Auth -Type
attribute is that one authentication method will work , but the
others will not.
#
The common reasons to set the Auth -Type attribute by hand
is to either forcibly reject the user , or forcibly accept him.
#
authenticate {

#
Allow EAP -TNC authentication.

29

eap_tnc
}

Session database , used for checking Simultaneous -Use. Either the radutmp
or rlm_sql module can handle this.
The rlm_sql module is *much* faster
session {

radutmp
}

Post -Authentication
Once we KNOW that the user has been authenticated , there are
additional steps we can take.
post -auth {

if (control:TNC -Status == "Access") {
update reply {

Tunnel -Type := VLAN
Tunnel -Medium -Type := IEEE -802
Tunnel -Private -Group -ID := 96

}
}
elsif (control:TNC -Status == "Isolate") {

update reply {
Tunnel -Type := VLAN
Tunnel -Medium -Type := IEEE -802
Tunnel -Private -Group -ID := 97

}
}

Note that we do NOT assign IP addresses here.
If you try to assign IP addresses for EAP authentication types ,
it WILL NOT WORK. You MUST use DHCP.
#
Access -Reject packets are sent through the REJECT sub -section of the
post -auth section.
#
Add the ldap module name (or instance) if you have set
’edir_account_policy_check = yes ’ in the ldap module configuration
#

Post -Auth -Type REJECT {
attr_filter.access_reject

}
}

} # inner -tunnel -second block

wpa supplicant.conf

The identity and password have to be the same as in the users-configuration on FreeRA-
DIUS.
network ={

ssid="eap_ttls"
key_mgmt=IEEE8021X
eap=TTLS
identity="tncuser"
password="password"
ca_cert="/home/tncuser/tnc/certs/ca.pem"
id_str=""

}

30

6 naaeap

6.1 General Information

The naaeap library processes the TNC specific data that was extracted out of the
EAP-TNC packet by the EAP-TNC module of FreeRADIUS / forwards TNC data for
encapsulation within EAP to that module. The main purpose of naaeap is to handle
fragmentation and establish the communication context to the tncs module.

6.2 Architecture

naaeap is provided as shared library. The classes contained are basically separated
into classes providing logic and into classes providing simple entities. Since naaeap is
used by the EAP-TNC module (which is written in C), naaeap exposes a C interface
defined in naaeap.h. The interface includes functions for initialization, connection
management and the processing of TNC data. Most of the calls (except those that
deal with Fragmentation) are forwarded to the tncs module.

7 tncs

7.1 General Information

The tncs receives incoming TNCCS and IMCIMV messages. TNCCS messages (like
preferred language) are directly processed by the tncs. IMCIMV messages are for-
warded to the corresponding IMVs. Routing is based upon the respective message
types. The tncs is responsible for correctly loading/initializing/calling and terminat-
ing all IMVs (those that are specified in the tnc config file). Currently, tncs supports
only IF-TNCCS 1.1. Approaches to integrate IF-TNCCS-SoH have not been finished
yet.

7.2 Architecture

The TNC server implementation of TNC@FHH. Exposes a C++ interface that is used
by naaeap. The C++ interface is defined in Coordinator.h. It includes only few
methods. The most important ones deal with initialization, connection management
and the processing of TNC data.

8 imunit

8.1 General Information

imunit provides an easy to use framework for the development of new IMC/IMV
pairs. imunit compiles and runs on many Unix-like systems. Windows is currently

31

Figure 3: naaeap class diagram (overview)

32

Figure 4: tncs class diagram (overview)

not supported. However, we assume that Windows-support would need only minor
modifications of the build process.5

The following TNC interfaces are supported by imunit

• IF-IMC 1.2 (http://www.trustedcomputinggroup.org/resources/tnc_ifimc_
specification)

• IF-IMV 1.2 (http://www.trustedcomputinggroup.org/resources/tnc_ifimV_
specification)

To demonstrate the use of imunit for the development of new IMC/V pairs, TNC@FHH
contains a very basic exampleimc/v pair.

8.2 Architecture

Figure 5 gives an overview of the imunit package. The components and their functions
will be described in the following.

On Unix-like Systems, IMCs and IMVs are provided as shared objects (*.so). The
IMC/V modules can be used via the IF-IMC/V interface. These interfaces are specified
as C-functions. However, the imunit package is mostly written in C++, allowing us
to use an object-oriented design internally.

Besides the C/C++ mapping, there is another interesting issue regarding the in-
stantiation of objects: in imunit, there is one class that represents the shared library

5Appropriate patches are very welcome ...

33

http://www.trustedcomputinggroup.org/resources/tnc_ifimc_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifimc_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifimV_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifimV_specification

Figure 5: imunit class diagram (overview)

34

itself (named IMCLibrary/IMVLibrary). Normally, for a specific IMC or IMV shared
library, there will be one object of this class for each TNCC/TNCS running on a
platform.

To address the issue that a TNCC/TNCS can handle multiple connections in par-
allel, there needs to be a connection-based representation of an IMC/IMV. This rep-
resentation is provided by the AbstractIMC/AbstractIMV class. Normally, there will
be one object of this class for each connection that is handled by a TNCC/TNCS
on a platform. As a developer of an IMC/V pair, you have to provide your own im-
plementation of IMCLibrary and AbstractIMC or IMVLibrary and AbstractIMV by
inhereting from the classes of the imunit package. The good thing is that you do not
have to deal with plain C this way.

In the following, we will give a short description of each class available in the imunit
package. How they can be used to develop a simple ExampleIMC/V will be discussed
in section 9.2.

8.3 General Classes

IMUnitLibrary This class encapsulates the similarities of an IMC and an IMV library.
There is exactly one instance of this class for each TNCC or TNCS that uses the
corresponding IMC or IMV library. The main purpose of this class is to provide
general information about the library (name, message types used) and to handle the
(de)initialization process. Direct known subclasses are IMCLibrary and IMVLibrary.

AbstractIMUnit This class encapsulates the similarities of an IMC and an IMV in-
stance that is bound to a specific connection. The connection is handled via the TNCC
or the TNCS. There is normally one instance of this class for each ongoing connection.
The class implements methods that are available for IMCs and for IMVs (notifyCon-
nectionChange(), batchEnding() and receiveMessage()). Direct known subclasses are
AbstractIMC and AbstractIMV.

ResultException A simple exception class. Extends std::exception. This class
can carry a TNC_Result return value. Exceptions of this class are used internally
in the imunit package to handle errors in a more convenient way than it is possible
with simple return values. If a TNCC/TNCS must be notified about an error, the
ResultException can be easily mapped to a simple TNC_Result value that is return by
an interface C-function. This class has no known subclasses.

8.4 IMC-specific Classes

IMCLibrary This class inherits from IMUnitLibrary and encapsulates all IMC spe-
cific functionalities of an IMC library. This class multiplexes incoming calls from an
TNCC to a conrete instance of AbstractIMC. Furthermore, it holds all pointers to the
TNCC functions as specified by IF-IMC. IMC developers must extend this class to
implement their own IMC library. IMCLibrary defines a pure virtual factory method
(createNewImcInstance()) that must be implemented by the IMC developer.

35

AbstractIMC This class inherits from AbstractIMUnit. It represents instances of an
IMC that are bound to a certain connection. It manages the state of a concrete IMC
related to a given connection ID. IMC developers must extend this class to implement
their own IMC. This class defines a pure virtual method (beginHandshake()) that must
be implemented by the IMC developer.

TNCC This is an interface class that encapsulates all TNCC functions of the IF-
IMC interface. It allows AbstractIMC (and the sub-classes implemented by an IMC
developer) to call the TNCC via an instance of this class (instead of directly using
C-function pointers). TNCC has no known sub-classes.

IFIMCImpl.cpp (deprecated) This ”‘class”’ is actually no class. It contains the map-
ping from C to C++ for the IMC functions of IF-IMC. Note: This file is empty since
version 0.6.0. Its content has been moved to the TNCFHH_IMCLIBRARY_INITIALIZE
macro in IMCLibrary.h. The file will be removed from imunit in the next release.

8.5 IMV-specific Classes

IMVLibrary This class inherits from IMUnitLibrary and encapsulates all IMV spe-
cific functionalities of an IMV library. This class multiplexes incoming calls from an
TNCS to a conrete instance of AbstractIMV. Furthermore, it holds all pointers to the
TNCS functions as specified by IF-IMV. IMV developers must extend this class to
implement their own IMV library. IMVLibrary defines a pure virtual factory method
(createNewImvInstance()) that must be implemented by the IMV developer.

AbstractIMV This class inherits from AbstractIMUnit. It represents instances of an
IMV that are bound to a certain connection. It manages the state of a concrete IMV
related to a given connection ID. IMV developers must extend this class to implement
their own IMV.

TNCS This is an interface class that encapsulates all TNCS functions of the IF-
IMV interface. It allows AbstractIMV (and the sub-classes implemented by an IMV
developer) to call the TNCS via an instance of this class (instead of directly using
C-function pointers). TNCS has no known sub-classes.

IFIMVImpl.cpp (deprecated) This ”‘class”’ is actually no class. It contains the map-
ping from C to C++ for the IMV functions of IF-IMV. Note: This file is empty since
version 0.6.0. Its content has been moved to the TNCFHH_IMVLIBRARY_INITIALIZE
macro in IMVLibrary.h. The file will be removed from imunit in the next release.

36

9 IMC/V Pairs

9.1 TNC@FHH IMC/V Pairs Message Types

TNC@FHH IMC/V pairs use the following message types:

• vendord id (FHH IANA PEN): 0x0080ab

• example: 0xfe

• dummy: 0x31

• clamav: 0x41

• platid: 0x33

• attestation: 0x34

• hostscanner: 0x30

9.2 example

9.2.1 General Information

This is a helloworld example for an IMC/V that is implemented based upon imunit.
In the remainder of this section, a step-by-step guide that explains how to implement
your own IMC/V based upon imunit is given.

9.2.2 Architecture

The architecture of the exampleimc/v is very simple. There are just four classes for
both the IMC and the IMV:

• ExampleIMCLibrary

• ExampleIMC

• ExampleIMVLibrary

• ExampleIMV

Each class extends the corresponding imunit class. There are no external files, pro-
cesses or programs used by the exampleimc/v.

37

9.2.3 Coding the exampleimc

1. Create a class ExampleIMCLibrary that extends IMCLibrary.

a) Define the message types for your IMC. Normally, each IMC has its own
message type6 (done in ExampleIMCLibrary.h). The message type is used
for two purposes: 1) it is used to indicate the type of messages send to the
TNCC and 2) it is used to tell the TNCC which message types the IMC is
interested in receiving.

/* define Vendor ID (see IANA PEN). */
#define VENDOR_ID 0x0080ab
/* define Messagesubtype */
#define MESSAGE_SUBTYPE 0xfe

b) Implement a ctor (and dtor if necessary). Add your message type defined
above to the list of message types the IMC wants to receive.

ExampleIMCLibrary :: ExampleIMCLibrary ()
{

LOG4CXX_INFO(logger , "Load ExampleIMC library ");
/* set all attributes inherited from tncfhh ::iml:: IMCLibrary */
// the library name for logging
this ->imUnitLibraryName = "ExampleIMC";
// add an messageType composed of Vendor ID (IANA PEN) and

MessageSubtype
this ->addMessageType(VENDOR_ID , MESSAGE_SUBTYPE);

}

c) Initialize the imunit framework (done in ExampleLibrary.cpp). This defines
the C-functions interface according to IF-IMC and maps those functions to
C++ methods of imunit. You must provide the class name of your Exam-
pleIMCLibrary implementation as argument. This causes the framework to
create an instance of ExampleIMCLibrary within the initialization macro.

// TNC@FHH IMCLibrary Initialization +
// implement IF-IMC c-functions
TNCFHH_IMCLIBRARY_INITIALIZE(ExampleIMCLibrary) ;

d) Implement the pure virtual factory method. This method creates a new
instance of the ExampleIMC class (described in step 2). The method is
called when a new connection is created. The memory is freed when the
same connection is deleted.

tncfhh ::iml:: AbstractIMC *ExampleIMCLibrary :: createNewImcInstance(
TNC_ConnectionID conID)

{
LOG4CXX_TRACE(logger , "createNewImcInstance(" << conID << ")");
// just return a new instance of ExampleIMC
return new ExampleIMC(conID , this);

}

2. Create a class ExampleIMC that extends AbstractIMC.

a) Define the ctor (and dtor if necessary). The ctor needs the connection
ID and a pointer to the corresponding ExampleIMCLibrary as arguments.

6This will likely change when IF-M is released.

38

Internally, this causes the instantiation of a TNCC object which can forward
the calls to the “real” TNCC via the pointer to the ExampleIMCLibrary
(which holds the function pointers to the “real” TNCC). The benefit is:
you as IMC developer can call methods of the TNCC instantiation to talk
to the “real” TNCC.

ExampleIMC :: ExampleIMC(TNC_ConnectionID conID , ExampleIMCLibrary *
pExampleIMCLibrary)

:AbstractIMC(conID , pExampleIMCLibrary)
{

// initialize
}

b) Implement the (pure virtual) mandatory beginHandshake() method. In
this case, our IMC sends a first message to its ExampleIMV (by calling
sendMessage() of the TNCC).

TNC_Result ExampleIMC :: beginHandshake ()
{

LOG4CXX_TRACE(logger , "beginHandshake ()");
// this message should be send to ExampleIMV
std:: string sendMessage("Example message from ExampleIMC");
LOG4CXX_TRACE(logger , "Send Message: " << sendMessage);
// send message
this ->tncc.sendMessage ((unsigned char*) sendMessage.c_str (),

sendMessage.size()+1/*for ’\0’*/, VENDOR_ID , MESSAGE_SUBTYPE);
// return all ok
return TNC_RESULT_SUCCESS;

}

c) Implement optional methods. These are already implemented by the imunit
framework. But normally, to have them behave in a reasonable (from the
IMC developers point of view) manner, these should be overwritten. We
will override all optional methods.

i. Implement receiveMessage(). This is called to deliver a message from
the IMV which was received by the TNCC to the IMC. Here, our IMC
just sends another message.

TNC_Result ExampleIMC :: receiveMessage(TNC_BufferReference message ,
TNC_UInt32 messageLength , TNC_MessageType messageType)

{
LOG4CXX_DEBUG(logger , "receiveMessage round " << this ->getRound

());
// print received message dirty out. WARNING: don’t ape this ,
// message should end with non -null! Heed: Message can be evil!
LOG4CXX_INFO(logger , "Received Message: " << message);
// this message should be send to ExampleIMV
std:: string sendMessage("Another example message from ExampleIMC

.");
LOG4CXX_INFO(logger , "Send Message: " << message);
// send message
this ->tncc.sendMessage ((unsigned char*) sendMessage.c_str (),

sendMessage.size()+1/*for ’\0’*/, VENDOR_ID , MESSAGE_SUBTYPE)
;

// return all ok
return TNC_RESULT_SUCCESS;

}

ii. Implement batchEnding(). Here, it basically does nothing.

39

TNC_Result ExampleIMC :: batchEnding ()
{

LOG4CXX_TRACE(logger , "batchEnding");
// return all ok
return TNC_RESULT_SUCCESS;

}

iii. Implement notifyConnectionChange(). The new connection state can
be queried via the getConnectionState() method. Here, it basically does
nothing. Normally, you would change the state of your IMC according
to the connection state.

TNC_Result ExampleIMC :: notifyConnectionChange ()
{

LOG4CXX_TRACE(logger , "notifyConnectionChange");
/* if new handshake start */
if(this ->getConnectionState () == TNC_CONNECTION_STATE_HANDSHAKE)
/* reset IMC */;
// return all ok
return TNC_RESULT_SUCCESS;

}

3. Finished. Thats all for the IMC part.

9.2.4 Coding the exampleimv

Coding the ExampleIMV conceptually works the same as coding the ExampleIMC.
There are only minor differences regarding which methods must be overwritten/im-
plemented.

1. Create a class ExampleIMVLibrary that extends IMVLibrary.

a) Define the message types for your IMV. Normally, each IMV has its own
message type7 (done in ExampleIMVLibrary.h). The message type is used
for two purposes: 1) it is used to indicate the type of messages send to the
TNCS and 2) it is used to tell the TNCS which message types the IMV is
interested in receiving.

/* define Vendor ID (see IANA PEN). */
#define VENDOR_ID 0x0080ab
/* define Messagesubtype */
#define MESSAGE_SUBTYPE 0xfe

b) Implement a ctor (and dtor if necessary). Add your message type defined
above to the list of message types the IMV wants to receive.

ExampleIMVLibrary :: ExampleIMVLibrary ()
{

LOG4CXX_INFO(logger , "Load ExampleIMV library ");
/* set all attributes inherited from tncfhh ::iml:: IMVLibrary */
// the library name for logging
this ->imUnitLibraryName = "ExampleIMV";
// add an messageType composed of Vendor ID (IANA PEN) and

MessageSubtype
this ->addMessageType(VENDOR_ID , MESSAGE_SUBTYPE);

}

7This will likely change when IF-M is released.

40

c) Initialize the imunit framework (done in ExampleIMVLibrary.cpp). This
defines the C-functions interface according to IF-IMV and maps those func-
tions to C++ methods of imunit. You must provide the class name of your
ExampleIMVLibrary implementation as argument. This causes the frame-
work to create an instance of ExampleIMVLibrary within the initialization
macro.

// TNC@FHH IMVLibrary Initialization +
// implement IF-IMV c-functions
TNCFHH_IMVLIBRARY_INITIALIZE(ExampleIMVLibrary) ;

d) Implement the pure virtual factory method. This method creates a new
instance of the ExampleIMV class (described in step 2). The method is
called when a new connection is created. The memory is freed when the
same connection is deleted.

tncfhh ::iml:: AbstractIMV *ExampleIMVLibrary :: createNewImvInstance(
TNC_ConnectionID conID)

{
LOG4CXX_TRACE(logger , "createNewImvInstance(" << conID << ")");
// just return a new instance of ExampleIMV
return new ExampleIMV(conID , this);

}

2. Create a class ExampleIMV that extends AbstractIMV.

a) Define the ctor (and dtor if necessary). The ctor needs the connection
ID and a pointer to the corresponding ExampleIMVLibrary as arguments.
Internally, this causes the instantiation of a TNCS object which can forward
the calls to the “real” TNCS via the pointer to the ExampleIMVLibrary
(which holds the function pointers to the “real” TNCS). The benefit is: you
as IMV developer can call methods of the TNCS instantiation to talk to
the “real” TNCS.

ExampleIMV :: ExampleIMV(TNC_ConnectionID conID , ExampleIMVLibrary *
pExampleIMVLibrary)

:AbstractIMV(conID , pExampleIMVLibrary)
{

// initialize
}

b) In contrast to the IMC part, there is no mandatory (pure virtual) method
that must be implemented by ExampleIMV. However, we will override sev-
eral optional methods.

i. Implement receiveMessage(). This is called to deliver a message from
the IMC which was received by the TNCS to the IMV. Here, our IMV
sends a new message if this is the first round of the TNC handshake.
Otherwise, it provides an allow recommendation. The round counter is
managed by the imunit framework as follows:
• set to 0 at the end of IMC/VLibrary::notifyConnectionChange()

when called with newState == TNC_CONNECTION_STATE_HANDSHAKE
• for IMC/V : increased before IMC/VLibrary::batchEnding returns
• for the IMC: increased before IMCLibrary::beginHandshake returns

41

TNC_Result ExampleIMV :: receiveMessage(TNC_BufferReference message ,
TNC_UInt32 messageLength , TNC_MessageType messageType)

{
LOG4CXX_DEBUG(logger , "receiveMessage round " << this ->getRound ())

;
// print received message dirty out. WARNING: don’t ape this ,
// message should end with non -null! Heed: Message can be evil!
LOG4CXX_INFO(logger , "Received Message: " << message);
/* only send one message to ExampleIMC */
if (this ->getRound () < 1) {

// this message should be send to ExampleIMC
std:: string sendMessage("Example message from ExampleIMV");
LOG4CXX_INFO(logger , "Send Message: " << sendMessage);
// send message
this ->tncs.sendMessage ((unsigned char*) sendMessage.c_str (),

sendMessage.size()+1/*for ’\0’*/, VENDOR_ID , MESSAGE_SUBTYPE)
;

} else {
/* validation finish , set recommendation & co */
validationFinished = true;
// for access allow:
actionRecommendation = TNC_IMV_ACTION_RECOMMENDATION_ALLOW;
// set evaluation (see TNC_IMV_EVALUATION_RESULT_ ...)
evaluationResult = TNC_IMV_EVALUATION_RESULT_DONT_KNOW;

}
// return all ok
return TNC_RESULT_SUCCESS;

}

ii. Implement batchEnding(). Here, it basically does nothing.
TNC_Result ExampleIMV :: batchEnding ()
{

LOG4CXX_TRACE(logger , "batchEnding");
// return all ok
return TNC_RESULT_SUCCESS;

}

iii. Implement notifyConnectionChange(). The new connection state can
be queried via the getConnectionState() method. Here, it basically does
nothing. Normally, you would change the state of your IMV according
to the connection state.

TNC_Result ExampleIMV :: notifyConnectionChange ()
{

LOG4CXX_TRACE(logger , "notifyConnectionChange");
/* if new handshake start */
if(this ->getConnectionState () == TNC_CONNECTION_STATE_HANDSHAKE)
/* reset IMV */;
// return all ok
return TNC_RESULT_SUCCESS;

}

3. Finished. Thats all for the IMV part.

9.3 dummy

9.3.1 General Information

This is another helloworld example for an IMC/V that is implemented based upon
imunit. The IMC reads a local file, sends the content to the IMV, which provides a
recommendation based upon this message.

42

9.3.2 Architecture

The architecture of the dummyimc/v is very simple. The IMC sends the content
of a local file to the IMV. The content is either ”allow”, ”isolate”, or ”none”, that
correspond to the respective TNC recommendations. The default location of the policy
is /etc/tnc/dummyimc.file. The IMV uses a policy that defines how many messages
it wants to receive before a recommendation is granted. The default location of the
policy is /etc/tnc/dummyimv.policy.

9.4 clamav

9.4.1 General Information

The clamav IMC/V checks the status of the anti virus software ClamAV. The IMC/V
pair supports the evaluation of the following properties:

• Operational Status of clamd

• Version of clamav

• Version of main

• Version of daily

The baseline for this evaluation is the clamavimv.policy file. This is a simple text file
that enables you to specify the desired good values of an endpoint’s ClamAV config-
uration. The file is commented extensively. The policy file is read at the beginning
of each new handshake. Remediation is not supported in this version. If the data
received from the clamavimc matches the desired values in the policy, an ’ALLOW’
recommendation is provided. Otherwise, an ’ISOLATE’ recommendation is provided.

9.4.2 Architecture

The IMC/V pair consists of four classes that extend those of the imunit framework (like
the exampleimc/v from section 9.2). In order to work properly, the clamavimc needs a
configuration file. The default location is /etc/tnc/clamavimc.conf. The file is com-
mented extensively. The clamavimv needs a policy file where the desired, reference val-
ues are specified. The default location of the policy is /etc/tnc/clamavimv.policy.
The file is commented extensively. The measurement values on the AR are obtained
by using the clamconf utility of Clamav. Depending on last clamav update (full or
incremental) the filname ending for main and daily can be *.cvd or *.cld. Former
versions to 0.7.0 of clamavimc/v did not consider this.

9.5 platid

9.5.1 General Information

The idea of this IMC/V pair is to enable interoperable platform identification. It
implements a simple challenge/response protocol. The IMC signs the challenge with

43

its RSA private key. The IMV validates if the signature obtained from the IMC is good
and if the corresponding public key has been properly registered (e.g. whether it is a
known platform or not). The key management is based upon X.509 certificates. As a
special feature, the IMC supports to use a TPM protected key. The openssl tpm engine
package from the TrouSerS project is needed to accomplish this.

The protocol is as follows: The IMV receives a complete X.509 certificate from
the IMC. The IMV then sends back a random nonce to the IMC which is encrypted
with the RSA private key. The IMV decrypts the encrypted nonce with the public
key contained in the X.509 certificate and compares it with the one which was send.
Additionally the IMV compares the issuername and fingerprint of the X.509 certificate
with entries configured in its policy.

9.5.2 Architecture

The IMC is configured via a file. The default location is /etc/tnc/platidimc.file
It cotains information for the IMC where to find the platform’s X.509 certificate
and the corresponding RSA private key. The default location of the IMV policy is
/etc/tnc/platidimv.certs.

The IMC/V pair uses open ssl for cryptographic operations. If a TPM based key
should be used, the IMC additionally needs TrouSerS and the openssl tpm engine.
Please refer to the TrouSerS documentation for information how to set up the TPM
engine.

9.6 attestation

9.6.1 General Information

The attestation IMC/V pair implements a simple protocol for binary attestation. The
integrity of the AR is verified based on its TPM PCR values.

The following steps give a brief overview of the imc/v handshake:

• Step 1: IMC sends its AIK X.509 certificate.

• Step 2: IMV verifies AIK certificate.

• Step 3: IMV sends PCR SELECTION to IMC.

• Step 4: IMC generates TPM Quote based on PCR SELECTION and sends it
back to IMV.

• Step 5: IMV generates separate TPM Quote based on PCR reference values.

• Step 6: IMV compares own TPM Quote with IMC TPM Quote and verifies IMC
TPM Quote signature.

• Step 7: According to operation mode, step 3-6 can be repeated several times.

• Step 8: Depending on validation in step 6, IMV provides ”ALLOW” or ”NO ACTION”
recommendation.

44

TPM PCR values are SHA-1 hashes which represent available hard- and software
on a computer system, as well as the configuration thereof. These values are usually
determined during system start (trusted boot). TrustedGRUB extends the open-source
bootloader GNU GRUB with TPM support to measure the binary configuration (i.e.,
the identity) of modules to be loaded. Further information can be found at http:
//sourceforge.net/projects/trustedgrub/. Therefore a working TPM is needed
as well as a Trusted Software Stack (TSS) for TPM access, e.g. TrouSerS.

Attestation Identity Keys (AIKs) are used to ensure that PCR values (a TPM
Quote) come from a trustworthy TPM. Due to the fact that current version of attes-
tationIMC/V is not capable of verifying a CA certificate path, a fingerprint of all used
AIK credentials must be made known to the IMV.

9.6.2 Architecture

IMV policy is located at /etc/tnc/attestationimv.policy and contains a list of
PCRs with their associated, desired reference values. Two modes of operation are avail-
able. quoteType=single requests PCRs sequentially one after another. quoteType=complete
asks the IMC to quote all given PCRs at once. Single quote mode allows you to de-
termine which PCR value does not match the policy but also causes one batch per
PCR value, resulting in a higher amount of network traffic. The TPM Quote is ba-
sically a SHA-1 hash of the TCPA QUOTE INFO structure. TPM quoting request
is performed by the corresponding calls to the TSS, e.g. TrouSerS since version 0.3.4
is needed. This version of attestationIMV does not support different policies (PCR
values) per AR. To prevent replay attacks a random 20 byte nonce is also part of each
PCR SELECTION.

IMC configuration is located at /etc/tnc/platidIMC.file and contains a path to
the X509 certificate and its corresponding private-key (AIK). Currently, tools from
http://www.privacyca.com are used to create AIKs. The code from identity.c
creates a AIK blob and a corresponding X.509 certificate. The SHA-1 hash from this
certificate can be extracted by using x509 tool from OpenSSL.

9.7 hostscanner

9.7.1 General Information

The hostscannerimc/v scans for opened ports on an endpoint. The ports to be scanned
and the expected status of these ports are defined in the IMVs policy file.

9.7.2 Architecture

In the IMV’s policy, a list of ports with their desired status can be specified. The
default location of the policy is /etc/tnc/hostscannerimv.policy. The IMC does
not require a configuration file.

45

http://sourceforge.net/projects/trustedgrub/
http://sourceforge.net/projects/trustedgrub/
http://www.privacyca.com

10 tncsim

10.1 General Information

tncsim is a simple program that allows you to test IMC/V pairs locally on one endpoint.
tncsim loads IMCs and IMVs and initiates a single TNC handshake. Lots of debug
information is printed out, including the binary structure of the TNC packets sent
from TNCC to TNCS and vice versa.

10.2 Architecture

In its default configuration, tncsim uses libtnc as client and TNC@FHH tncs as server.
IMC/V pairs that shall be loaded are specified in /etc/tnc/tncsim config. tncsim
can be extended to support arbitrary TNCC and TNCS implementations. For details,
please refer to the sourcecode.

11 Copyright and License

This software is Copyright (C) 2010 Fachhochschule Hannover (University of Applied
Sciences and Arts). Use is subject to license conditions. The main licensing options
available are Open Source or Commercial:

Open Source Licensing This is the appropriate option if you want to share the
source code of your application with everyone you distribute it to, and you also want
to give them the right to share who uses it. If you wish to use TNC@FHH under
Open Source Licensing, you must contribute all your source code to the open source
community in accordance with the GPL Version 2 when your application is distributed.
See http://www.gnu.org/copyleft/gpl.html

Commercial Licensing This is the appropriate option if you are creating proprietary
applications and you are not prepared to distribute and share the source code of your
application. Contact trust@f4-i.fh-hannover.de for details.

12 Acknowledgement

TNC@FHH is implemented by the Trust@FHH research group of the Fachhochschule
Hannover, the University of Applied Sciences and Arts, located in Lower Saxony,
Germany. Parts of this work have been carried out within the tNAC research project
(support code 1704B08) which is funded by the German Federal Ministry of Education
and Research (http://www.bmbf.de/en/index.php).

46

http://www.bmbf.de/en/index.php

	Introduction
	Project Structure
	Building and Installing TNC@FHH
	freeradius-eaptnc-patch
	General Information
	Architecture

	freeradius-eapttls-patch
	General Information
	RLM_EAP_TTLS
	File eap_ttls.h
	File rlm_eap_ttls.c
	File ttls.c

	Raw flow of operations
	Detailed flow of operations
	Sequence diagrams
	Configuration

	naaeap
	General Information
	Architecture

	tncs
	General Information
	Architecture

	imunit
	General Information
	Architecture
	General Classes
	IMC-specific Classes
	IMV-specific Classes

	IMC/V Pairs
	TNC@FHH IMC/V Pairs Message Types
	example
	General Information
	Architecture
	Coding the exampleimc
	Coding the exampleimv

	dummy
	General Information
	Architecture

	clamav
	General Information
	Architecture

	platid
	General Information
	Architecture

	attestation
	General Information
	Architecture

	hostscanner
	General Information
	Architecture

	tncsim
	General Information
	Architecture

	Copyright and License
	Acknowledgement

